Difference between revisions of "UGP Variant Pipeline 1.2.1"
Line 5: | Line 5: | ||
===Software Versions=== | ===Software Versions=== | ||
− | *[ | + | *[http://srynobio.github.io/cApTUrE/ cApTUrE] is a lightweight NGS pipeline, created for the
Utah Genome Project (UGP) |
*BWA: 0.7.10 | *BWA: 0.7.10 | ||
*Picard: 1.127 (Broad version) | *Picard: 1.127 (Broad version) |
Revision as of 20:30, 28 January 2015
Contents
Utah Genome Project
Jan. 2015 Variant Calling Pipeline Version 1.2.1
Software Versions
- cApTUrE is a lightweight NGS pipeline, created for the Utah Genome Project (UGP)
- BWA: 0.7.10
- Picard: 1.127 (Broad version)
- GATK: 3.3-0
- SamTools: 0.2.0
- FastQC v0.10.1
Data Source
Data sets used for the variant calling pipeline come from the Broad GSA (GATK) group as the 'GATK resource bundle 2.5' version 2.8
wget -r ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.5/b37
Reference Genome (GRCh37):
- human_g1k_v37_decoy.fasta
Call region file generated from NCBI
- GRCh37 GFF3
VCF files for RealignerTargetCreator knowns and dbsnp for BaseRecalibrator.
- known_indel: Mills_and_1000G_gold_standard.indels.b37.vcf
- known_indel: 1000G_phase1.indels.b37.vcf
- known_dbsnp: dbsnp_137.b37.vcf
Background Files
- We have created 1000Genomes (BWA mem/GATK 3.0+) background files to be ran concurrently with the GenotypeGVCFs step.
Groups Currently completed:
- CEU
- GBR
- FIN
Version 1.0.5 background files have been updated to show only the indviduals of each group, not the file names.
This is a complete list of the background individuals for run completed > 1.0.5 [1]
If you would like a copy of the current files, we have made a public AWS s3 bucket Using s3cmd execute the following command: s3cmd get s3://ugp-1k-backgrounds --recursive
Resource files for VariantRecalibrator_SNP
- hapmap_3.3.b37.vcf
- 1000G_omni2.5.b37.vcf
- 1000G_phase1.snps.high_confidence.b37.vcf
Resource files for VariantRecalibrator_INDEL
- Mills_and_1000G_gold_standard.indels.b37.vcf
- 1000G_phase1.indels.b37.vcf
Sequencing
This pipeline is designed for 100 bp (or greater) Illumina HiSeq PE exome or WGS sequence data with Sanger/Illumina 1.9 quality encoding, and uses Illumina naming convention found here [2]
Validate File Integrity with md5sum
An md5sum signature should be provided for each FastQ file by the sequencing center. After the file has been downloaded, locally check the md5sum to be sure that no data corruption occurred during the file transfer.
md5sum file.fastq > file_local.md5 diff file_local.md5 file_provided.md5 Now the pipeline runs md5_check to validation the results and will quit if errors are found.
If the md5sum signature differs from that provided for the file:
- Check to be sure you have the correct file.
- Check if the md5sum was calculated on that compressed or uncompressed file by the provider and be sure to do the same with the local copy.
- Try the download again.
- Contact the sequence provider.
FastQ File Analyses
fastqc Sample1_L1_R1.txt
From the sumamry.txt report we check
- FAIL sections
From the fastqc_data.txt file we check the following values:
- Encoding (must be Sanger / Illumina 1.9)
- Total Sequences (Currently set to 30000000)
- Filtered Sequences (Currently set to less then 5)
- Sequence length (must be >= 100 bp)
- %GC (45 < x < 55)
- Total Duplicate Percentage (Currently set to 60.0)
The pipeline now runs fastqc_check and output these result into QC-report.txt.
Indexing
The following indexing is required using BWA, Picard and SamTools. GATK requires all three. However this step only needs to be done once "per-machine".
- BWA
bwa index -a bwtsw human_g1k_v37_decoy.fasta
- Picard
java -jar CreateSequenceDictionary.jar R=human_g1k_v37_decoy.fasta O=human_g1k_v37_decoy.dic
- SamTools
samtools faidx human_g1k_v37_decoy.fasta
Alignment
Align reads to the genome with bwa.
The 'BWA-mem' program will find the reference coordinates of the input reads (independent of their mate-pair). The following parameters are those used by the 1KG project and GATK for aligning Illumina data.
bwa mem -M -R "read group" human_g1k_v37_decoy.fasta Sample1_L1_R1.fq Sample1_L1_R2.fq | samtools view -bSho BAM_FILE -
BAM File Analyses and Processing
Alignment BAM files are improved in various ways to help increase the quality and speed of subsequent variant calling steps.
BAM Sorting
java -jar -XX:ParallelGCThreads=# -Xmx#g -Djava.io.tmpdir=/tmp /usr/local/picard/dist/picard.jar SortSam INPUT=*.bam OUTPUT=*_sorted.bam VALIDATION_STRINGENCY=LENIENT SORT_ORDER=coordinate MAX_RECORDS_IN_RAM=5000000 CREATE_INDEX=True &> SortSam.log-#
Merge lane level BAMs to individual
- This step only needs to run if you have multiple lanes per sample.
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp /usr/local/picard/dist/picard.jar MergeSamFiles.jar INPUT=#*_sorted.bam INPUT=#*_sorted.bam INPUT=[ ... ] OUTPUT=*.bam VALIDATION_STRINGENCY: LENIENT MAX_RECORDS_IN_RAM: 5000000 CREATE_INDEX: True SORT_ORDER: coordinate ASSUME_SORTED: True USE_THREADING: True &> MergeSamFiles.log-#
Mark Duplicates
Remove PCR/Optical duplicate reads
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp /usr/local/picard/dist/picard.jar MarkDuplicates INPUT=*_sorted.bam OUTPUT=*_sorted_Dedup.bam METRICS_FILE=*_sorted_Dedup.metrics VALIDATION_STRINGENCY=LENIENT MAX_RECORDS_IN_RAM=5000000 ASSUME_SORTED=True CREATE_INDEX=True &> MarkDuplicates.log-#
Currently all duplicates are flagged to allow GATK to handle them.
BAM Quality Control
At this point the pipeline has broken the tasks into chromosomal regions.
- CollectMultipleMetrics
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp /usr/local/picard/dist/picard.jar CollectMultipleMetrics INPUT=*_sorted_Dedup_realign_chr#_recal.bam OUTPUT=*_sorted_Dedup_realign_chr#_recal.metrics VALIDATION_STRINGENCY=LENIENT PROGRAM=QualityScoreDistribution REFERENCE_SEQUENCE=human_g1k_v37_decoy.fasta &> CollectMultipleMetrics.log-#
- idxstats
samtools idxstats [dedup bam files] > dedup-bamfile.stats
Now the pipeline will take idxstats ouput and check for unmapped reads.
Local Realignment of Indels
- RealignerTargetCreator
This is where the tasks are broken into chromosomal regions.
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T RealignerTargetCreator -R human_g1k_v37_decoy.fasta -I *_sorted_Dedup.bam --num_threads # --known Mills_and_1000G_gold_standard.indels.b37.vcf --known 1000G_phase1.indels.b37.vcf -L chr#_region_file.list -o *_chr#_realign.intervals &> RealignerTargetCreator.log-#
- IndelRealigner
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T IndelRealigner -R human_g1k_v37_decoy.fasta -I *_sorted_Dedup.bam -L chr#_region_file.list -targetIntervals *_chr#_realign.intervals -known Mills_and_1000G_gold_standard.indels.b37.vcf -known 1000G_phase1.indels.b37.vcf -o *_sorted_Dedup_realign_chr#.bam &> IndelRealigner.log-1
BaseRecalibration & PrintReads
- BaseRecalibrator
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T BaseRecalibrator -R /human_g1k_v37_decoy.fasta -I *_sorted_Dedup_realign_chr#.bam --num_cpu_threads_per_data_thread # --knownSites dbsnp_137.b37.vcf --knownSites Mills_and_1000G_gold_standard.indels.b37.vcf --knownSites 1000G_phase1.indels.b37.vcf -o *_sorted_Dedup_realign_chr#_recal_data.table &> BaseRecalibrator.log-#
- PrintReads
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T PrintReads -R human_g1k_v37_decoy.fasta -I *_sorted_Dedup_realign_chr#.bam --num_cpu_threads_per_data_thread # -BQSR *_sorted_Dedup_realign_chr#_recal_data.table -o *_sorted_Dedup_realign_chr#_recal.bam &> PrintReads.log-#
Variant Calling
HaplotypeCaller
- Now HaplotypeCaller handels SNP and INDEL calls.
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T HaplotypeCaller -R human_g1k_v37_decoy.fasta --min_base_quality_score 20 --variant_index_parameter 128000 --emitRefConfidence GVCF --standard_min_confidence_threshold_for_calling 30.0 --num_cpu_threads_per_data_thread # --variant_index_type LINEAR --standard_min_confidence_threshold_for_emitting 30.0 -I *_sorted_Dedup_realign_chr*_recal.bam -L chr#_region_file.list -o chr#_region_*.raw.snps.indels.gvcf &> HaplotypeCaller.log-#
CatVariants
Collect all individual gvcf files.
java -cp GenomeAnalysisTK.jar org.broadinstitute.gatk.tools.CatVariants -R human_g1k_v37_decoy.fasta --assumeSorted -V chr#_region_*.raw.snps.indels.vcf -V [ ... ] -out *.raw.snps.indels.gCat.vcf &> CatVariants.log-*
CombineGVCFs
Collect all the chromosomal cat files. This is also the step where mergeGvcf are collected for future runs.
java -jar -Xmx#g -XX:ParallelGCThreads=# GenomeAnalysisTK.jar -T CombineGVCFs -R human_g1k_v37_decoy.fasta --variant *.raw.snps.indels.gCat.vcf --variant [ ... ] -o cApTUrE_*_final_mergeGvcf.vcf &> CombineGVCF.log-*
GenotypeGVCFs
java -jar -Xmx#g -XX:ParallelGCThreads=# GenomeAnalysisTK.jar -T GenotypeGVCFs -R human_g1k_v37_decoy.fasta --num_threads # --variant cApTUrE_*_final_mergeGvcf.vcf --variant CEU_mergeGvcf.vcf --variant GBR_mergeGvcf.vcf --variant FIN_mergeGvcf.vcf -L chr#_region_file.list -o cApTUrE_*_#_genotyped.vcf &> GenotypeGVCF.log-#
Combine_Genotyped
Collect all the individual genotype steps.
java -cp GenomeAnalysisTK.jar org.broadinstitute.gatk.tools.CatVariants -R human_g1k_v37_decoy.fasta --assumeSorted -V cApTUrE_*_#_genotyped.vcf -V [ ... ] -out cApTUrE_*_genotyped.vcf &> Combine_Genotyped.log-#
VariantRecalibrator
- SNP Recalibration
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=tmp GenomeAnalysisTK.jar -T VariantRecalibrator -R human_g1k_v37_decoy.fasta --minNumBadVariants 5000 --num_threads # -resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap_3.3.b37.vcf -resource:omni,known=false,training=true,truth=true,prior=12.0 1000G_omni2.5.b37.vcf -resource:1000G,known=false,training=true,truth=false,prior=10.0 1000G_phase1.snps.high_confidence.b37.vcf -an QD -an MQRankSum -an ReadPosRankSum -an FS -an InbreedingCoeff -input cApTUrE_*_genotyped.vcf -recalFile cApTUrE_*_snp_recal -tranchesFile cApTUrE_*_snp_tranches -rscriptFile cApTUrE_*_snp_plots.R -mode SNP &> VariantRecalibrator_SNP.log-#
- INDEL Recalibration
java -jar -Xmx#g -XX:ParallelGCThreads=# -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T VariantRecalibrator -R human_g1k_v37_decoy.fasta --minNumBadVariants 5000 --num_threads # -resource:mills,known=false,training=true,truth=true,prior=12.0 Mills_and_1000G_gold_standard.indels.b37.vcf -resource:1000G,known=false,training=true,truth=true,prior=10.0 1000G_phase1.indels.b37.vcf -an MQRankSum -an ReadPosRankSum -an FS -input cApTUrE_*_genotyped.vcf -recalFile cApTUrE_*_indel_recal -tranchesFile cApTUrE_*_indel_tranches -rscriptFile cApTUrE_*_indel_plots.R -mode INDEL &> VariantRecalibrator_INDEL.log-#
ApplyRecalibration
- SNP Apply
java -jar -Xmx#g -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T ApplyRecalibration -R human_g1k_v37_decoy.fasta --ts_filter_level 99.5 --excludeFiltered --num_threads # -input cApTUrE_*_genotyped.vcf -recalFile cApTUrE_*_snp_recal -tranchesFile cApTUrE_*_snp_tranches -mode SNP -o cApTUrE_*_recal_SNP.vcf &> ApplyRecalibration_SNP.log-*
- INDEL Apply
java -jar -Xmx#g -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T ApplyRecalibration -R human_g1k_v37_decoy.fasta --ts_filter_level 99.0 --excludeFiltered --num_threads # -input cApTUrE_*_genotyped.vcf -recalFile cApTUrE_*_indel_recal -tranchesFile cApTUrE_*_indel_tranches -mode INDEL -o cApTUrE_*_recal_INDEL.vcf &> ApplyRecalibration_INDEL.log-*
CombineVarients
These command will combine INDEL and SNP files into a single VCF file.
- CombineVarients
java -jar -Xmx#g -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T CombineVariants -R human_g1k_v37_decoy.fasta --num_threads # --genotypemergeoption UNSORTED --variant cApTUrE_*_recal_SNP.vcf --variant cApTUrE_*_recal_INDEL.vcf -o cApTUrE_*_Combined.vcf &> CombineVariants.log-*
- SelectVariants
java -jar -Xmx#g -Djava.io.tmpdir=/tmp GenomeAnalysisTK.jar -T SelectVariants -R human_g1k_v37_decoy.fasta --variant cApTUrE_*_Combined.vcf -select "DP > 100" -o cApTUrE_*_Final+Backgrounds.vcf &> SelectVariants.log-*
Variant File QC
Quality Metrics on variants
- Ti/Tv Ratio (2.1 for WGS ~2.8 for exome)
- HapMap concordance
- SNV/Indel Counts
- Rare variant enrichment
- DP
- Q
- GQ